Cancer survival in Estonia 2010–2014 by extent of disease

Estonian Cancer Registry data on all cases of selected malignant tumours diagnosed in adults (age \geq 15 years) in Estonia were included in the analysis (death certificate only and autopsy cases excluded). Relative survival ratios were calculated as the ratio of the observed survival of cancer patients and the expected survival of the underlying general population (1). The latter was calculated according to the Ederer II method (2) using national life tables for Estonian population stratified by gender, age and calendar year. Period analysis was used to estimate relative survival for 2010–2014 (3,4).

Extent of disease at diagnosis was categorized based on cancer notification: localized; local/regional spread (spread to neighbouring organs and/or regional lymph nodes); distant metastasis; unknown (not reported; unspecified advanced process).

Age-standardized one-year and five-year relative survival of selected cancer sites by extent of disease, Estonia 2010–2014

	Relative survival							
	Localized		Local/regional spread		Distant metastasis			
							Unknown	
Cancer site	1-year	5-year	1-year	5-year	1-year	5-year	1-year	5-year
Mouth and pharynx	88	66	58	27	18	4	33	29
Stomach	84	70	68	37	21	3	32	15
Colon	94	87	88	70	48	15	64	36
Rectum	93	83	91	66	52	12	63	40
Pancreas	63	32	46	11	8	1	29	11
Lung and trachea	84	56	54	17	15	2	19	4
Skin melanoma	99	91	90	61	25	11	85	75
Breast (female)	100	97	96	74	54	14	81	51
Corpus uteri	97	88	87	53	53	17	69	58
Prostate	101	101	99	74	68	33	90	75
Kidney	97	90	70	46	38	13	66	44

- 1. Dickman PW, Adami HO. Interpreting trends in cancer patient survival. J Intern Med 2006;260:103–17.
- 2. Ederer F, Heise H. Instructions to IBM 650 programmers in processing survival computations. Methodological note no. 10. Bethesda, MD: End Results Evaluation Section, National Cancer Institute; 1959.
- 3. Brenner H, Gefeller O, Hakulinen T. Period analysis for 'up-to-date' cancer survival data: theory, empirical evaluation, computational realisation and applications. Eur J Cancer 2004;40:326–35.
- 4. Brenner H, Rachet B. Hybrid analysis for up-to-date long-term survival rates in cancer registries with delayed recording of incident cases. Eur J Cancer 2004;40:2494–501.